# Free Energy of the Chiral Potts Model in the Scaling Region 

R. J. Baxter ${ }^{1}$

Received July 14, 1995


#### Abstract

We explicitly calculate the free energy $\psi$ of the general solvable $N$-state chiral Potts model in the scaling region, for $T<T_{c}$. We do this from both of the two available results for the free energy, and verify that they are mutually consistent. If $t=T_{c}-T$, then we find that $\left(\psi-\psi_{c}\right) / t$ has a Taylor expansion in powers of $t^{2 / N}$ (together with higher-order non-scaling terms of order $t$, or $t \log t$ ).


KEY WORDS: Statistical mechanics; solvable lattice models; chiral Potts model.

## 1. INTRODUCTION

The free energy $\psi_{p q}$ of the solvable chiral Potts model depends on four quantities: the number $N$ of states per spin, a temperature-like parameter $k^{\prime}$, and explicitly on two rapidities $p$ and $q$. It was first obtained in 1988, ${ }^{(1)}$ yielding the critical exponent $\alpha=1-2 / N$. The method uses only the startriangle relation for the model (ref. 2; ref. 3, pp. 83-87), showing that this implies partial differential equations for $\psi_{p q}$, involving a single-rapidity function $G_{p}$. However, the solution of these equations is intricate and far from transparent.

Alternative expressions as explicit integrals were obtained later ${ }^{(4)}$ by solving the functional relations for the transfer matrices. ${ }^{(5)}$ A fuller derivation is given in ref. 6 , but regrettably there are inconsistencies in the choices of the variables $v_{p}$ and $v_{q}$ of Eqs. (52)-(64) therein: it seems that $v_{p}$ and $v_{q}$ should instead $\cdot$ be chosen to lie between $-3 \pi / 2$ and $-\pi / 2$, and that the result (64) is then correct for $-\pi<u_{p}<u_{q}<0$. The results given in ref. 4, with $-\pi / 2<v_{p}, v_{q}<\pi / 2$, are correct as written.

[^0]It is by no means obvious that the solution of ref. 1 is the same as that of refs. 4 and 6. It would be interest to establish this directly, so as to better understand the analyticity properties of $\psi_{p q}$, and to obtain explicit expressions for the single-rapidity function $G_{p}$.

We have not yet succeeded in doing this, but here we do show that the two results lead to the same explicit result for $\psi_{p q}$ in the scaling region near criticality. In fact we work not with $\psi_{p q}$, but with the quantity $\ln \tilde{\kappa}_{p q}$ related to it by (10) and (20): $\ln \tilde{\kappa}_{p q}=-\psi_{p q}-\ln \left(\rho_{p q} D_{p q}\right)$.

More precisely, if $k$ is the modulus of the model that is zero at criticality and unity at zero temperature, then near criticality $k^{2}$ is proportional to the temperature deviation $T-T_{c}$. The free energy has an expansion of the form

$$
\begin{equation*}
\ln \tilde{\kappa}_{p q}=P+Q k^{2}+k^{2} S\left(k^{4 / N}\right)+O\left(k^{4} \log k\right) \tag{1}
\end{equation*}
$$

(Higher terms in the expansion are of the form $k^{2 m+4 n / N}$, possibly multiplied by $\log k$.) Here $P, Q$ are independent of $k$, while $S(x)$ is a Taylorexpandable "scaling function," zero when $x$ is zero. Here we evaluate $P, Q$, $S(x)$ from the integral expressions of refs. 4 and 6. They are the quantities $C_{p q}^{(1)} / 4 N, C_{p q}^{(2)} / 4 N k^{2}, C_{p q}^{(3)} / 4 N k^{2}$ of Section 4.

In Appendix $A$ we check the equivalence of the various published forms for the critical free energy $P$ (at which point the model reduces to the Fateev-Zamolodchikov model ${ }^{(7)}$ ). In Appendix B we verify that the method of ref. 1 gives the same results for $Q, S(x)$ : this is an extension of the calculation in ref. 1 , where we obtained $P, Q$ and the first nonzero coefficient in the Taylor expansion of $S(x)$.

One interesting point is that both $P$ and $S(x)$ (but not $Q$ ) depend on the vertical and horizontal rapidity variables $u_{p}$ and $u_{q}$ only via their difference $u_{q}-u_{p}$. In fact, $S(x)$ is simply proportional to $\sin \left(u_{q}-u_{p}\right)$. Thus, although the chiral Potts model does not in general have the rapidity difference property, we do regain it in the scaling region (provided we neglect terms analytic in $k^{2}$ ).

## 2. THE MODEL

We define the solvable chiral Potts model in the usual way. ${ }^{(2-6)}$ Consider the square lattice of $\mathscr{N}$ sites and $L$ columns, drawn diagonally as in Fig. 1, with toroidal (periodic) boundary conditions. At each site $i$ there is a spin $\sigma_{i}$, which takes values $0, \ldots, N-1$. Adjacent spins interact with Boltzmann weights $W_{p q}\left(\sigma_{i}-\sigma_{j}\right)$ for $\mathrm{SW} \rightarrow$ NE edges and $\bar{W}_{p q}\left(\sigma_{i}-\sigma_{n}\right)$ for $\mathrm{SE} \rightarrow$ NW edges, as indicated.


Fig. 1. The square lattice (drawn diagonally) with $L$ columns and cylindrical boundary conditions.

We now define the functions $W_{p q}(n), \bar{W}_{p q}(n)$. Let $k$ be a real constant, $0<k<1, k^{\prime}=\left(1-k^{2}\right)^{1 / 2}$, and let $\omega=\exp (2 \pi i / N)$. Let $x_{p}, y_{p}, t_{p}, \lambda_{p}, \mu_{p}, J_{p}$ be complex numbers (" $p$-variables"), related by

$$
\begin{gather*}
x_{p}^{N}+y_{p}^{N}=k\left(1+x_{p}^{N} y_{p}^{N}\right), \quad x_{p} y_{p}=t_{p} \\
k x_{p}^{N}=1-k^{\prime} \lambda_{p}^{-1}, \quad k y_{p}^{N}=1-k^{\prime} \lambda_{p}  \tag{2}\\
\lambda_{p}=\mu_{p}^{N}, \quad J_{p}=-\lambda_{p}^{2} x_{p}^{N} / y_{p}^{N}
\end{gather*}
$$

We regard $N$ and $k$ as fixed parameters. Then if any one of the " $p$-variables" $x_{p}, \ldots, J_{p}$ is given, the rest are determined, to within a finite number of discrete choices of $N$ th roots and solutions of quadratic equations. In terms of the $a_{p}, b_{p}, c_{p}, d_{p}$ of ref. $2, x_{p}=a_{p} / d_{p}, y_{p}=b_{p} / c_{p}$, $\mu_{d}=d_{p} / c_{p}, J_{p}=-\left(a_{p} d_{p} / b_{p} c_{p}\right)^{N}$. We can regard the variables as being a point $p$ on an algebraic curve (with one degree of freedom), and refer to this point as the "rapidity" $p$. The parameters $t_{p}$ and $\lambda_{p}$ are particularly significant: they are delated by

$$
\begin{equation*}
k^{2} t_{p}^{N}=1-k^{\prime}\left(\lambda_{p}+\lambda_{p}^{-1}\right)+k^{\prime 2} \tag{3}
\end{equation*}
$$

As in ref. 1, we also introduce variables $u_{p}, v_{p}$ related to one another and to those above by

$$
\begin{gather*}
\dot{\sin } v_{p}=k \sin u_{p}, \quad k^{\prime}\left(\lambda_{p}-\lambda_{p}^{-1}\right)=2 k e^{i u_{p}} \cos v_{p} \\
x_{p}=e^{i(u-v) / N}, \quad y_{p}=e^{i(\pi+u+v) / N}, \quad t_{p}=e^{i(\pi+2 u) / N}  \tag{4}\\
J_{p}=\frac{k^{\prime 2}}{1+k^{2}-2 k \cos \left(u_{p}-v_{p}\right)}=\frac{\sin \left(u_{p}+v_{p}\right)}{\sin \left(u_{p}-v_{p}\right)}
\end{gather*}
$$

Similarly, define " $q$-variables" $x_{q}, y_{q}, t_{q}, \lambda_{q}, \mu_{q}, J_{q}, u_{q}, v_{q}$. Then the Boltzmann weights are, for all integers $n$,

$$
\begin{align*}
& W_{p q}(n)=W_{p q}(0)\left(\frac{\mu_{p}}{\mu_{q}}\right)^{n} \prod_{j=1}^{n} \frac{y_{q}-\omega^{j} x_{p}}{y_{p}-\omega^{j} x_{q}}  \tag{5}\\
& \bar{W}_{p q}(n)=\bar{W}_{p q}(0)\left(\mu_{p} \mu_{q}\right)^{n} \prod_{j=1}^{n} \frac{\omega x_{p}-\omega^{j} x_{q}}{y_{q}-\omega^{j} y_{p}}
\end{align*}
$$

In this paper we leave the normalization factors $W_{p q}(0), \bar{W}_{p q}(0)$ arbitrary, except to require that they be real and positive, and have the rotation invariance property given below in Eq. (15).

They have the periodicity properties $\quad W_{p q}(n+N)=W_{p q}(n)$, $\bar{W}_{p q}(n+N)=\bar{W}_{p q}(n)$. Here the rapidity $p$ is associated with the vertical direction, $q$ with the horizontal. We shall need the associated quantities

$$
\begin{align*}
\rho_{p q} & =\left\{\prod_{n=0}^{N-1} W_{p q}(n)\right\}^{1 / N}, & \bar{\rho}_{p q}=\left\{\prod_{n=0}^{N-1} \bar{W}_{p q}(n)\right\}^{1 / N} \\
D_{p q} & =\left\{\operatorname{det}_{N}\left[W_{p q}(i-j)\right]\right\}^{1 / N}, & \bar{D}_{p q}=\left\{\operatorname{det}_{N}\left[\bar{W}_{p q}(i-j)\right]\right\}^{1 / N}  \tag{6}\\
g_{p q} & =D_{p q} / \rho_{p q}, & \bar{g}_{p q}=\bar{D}_{p q} / \bar{\rho}_{p q}
\end{align*}
$$

Explicit product formulas for $\bar{D}_{p q}$ are given in Eqs. (3.22) of ref. 1 and (2.44) of ref. 5. In (23) of ref. 6 these are put into the form

$$
\begin{equation*}
\bar{g}_{p q}=N^{1 / 2} \eta^{-1 / N}\left[\left(x_{p}^{N}-x_{q}^{N}\right)\left(y_{p}^{N}-y_{q}^{N}\right)\right]^{(1-N) / 2 N} \prod_{j=1}^{N-1}\left(t_{p}-\omega^{j} t_{q}\right)^{j / N} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta=e^{i \pi(N-1) N+4 / 12} \tag{8}
\end{equation*}
$$

In Eq. (2.47) of ref. 5 it is remarked that

$$
\begin{equation*}
g_{p q} \bar{g}_{p q}=N k^{\prime(1-N) / N} \tag{9}
\end{equation*}
$$

The partition function depends on $p$ and $q$, so we write it as $Z_{p q}$. Then the partition function and dimensionless free energy per site are

$$
\begin{equation*}
\kappa_{p q}=Z_{p q}^{1 /-1}, \quad \psi_{p q}=-\ln \kappa_{p q} \tag{10}
\end{equation*}
$$

(ln this notation, the $\psi_{p q}^{(S q)}$ of Eq. (3.41) of ref. 1 and the $\psi$ of Eq. (28) of ref. 6 are $\psi_{p q}+\ln \left[\rho_{p q} \bar{\rho}_{p q}\right]$; while the $V\left(t_{q}, \lambda_{q}\right)$ of ref. 4 is $\left\{\kappa_{p q} /\left(\rho_{p q} \bar{D}_{p q}\right)\right\}^{L}$.)

### 2.1. Physical Regime

We can choose $x_{p}, x_{q}, y_{p}, y_{q}, t_{p}, t_{q}$ so that they all lie on the unit circle, and are arranged so that

$$
\begin{gather*}
\arg \left(x_{p}\right)<\arg \left(x_{q}\right)<\arg \left(y_{p}\right)<\arg \left(y_{q}\right)<\arg \left(\omega x_{p}\right)  \tag{11}\\
\arg \left(t_{p}\right)<\arg \left(t_{q}\right)<\arg \left(\omega t_{p}\right) \tag{12}
\end{gather*}
$$

Using (2), the restrictions (11) imply (12); conversely, if $t_{p}, t_{q}$ satisfy (12), there is a unique choice of $x_{p}, x_{q}, y_{p}, y_{q}$ that satisfies (11). If $-2 \pi / N<\arg \left(t_{p}\right)<0$, then this choice ensures that $\left|\lambda_{p}\right|<1$; if $0<\arg \left(t_{p}\right)<2 \pi / N$, then $\left|\lambda_{p}\right|>1$. Similarly for $t_{q}$ and $\lambda_{q}$.

With these choices, all the Boltzmann weights $W_{p q}(n), \bar{W}_{p q}(n)$ are real and positive, so the model is then physical: $Z_{p q}, \kappa_{p q}$ must be real and positive; $\psi_{p q}$ must be real. Here we shall focus our attention on this case, which we call the "physical regime." The parameters $u_{p}, v_{p}, u_{q}, v_{q}$ are particularly useful in this regime. They are then real, satisfying

$$
\begin{equation*}
-\pi / 2<v_{p}<\pi / 2, \quad-\pi / 2<v_{q}<\pi / 2, \quad u_{p}<u_{q}<u_{p}+\pi \tag{13}
\end{equation*}
$$

while $J_{p}$ and $J_{q}$ are real and positive.
Of course our results can be extended into the complex plane: such extensions can be very useful in any calculation, and vital in an understanding of the analyticity properties of $\kappa_{p q}$.

### 2.2. Rotation and Inversion Relations

An automorphism that plays a significant role in the model is $p \rightarrow R p$, where

$$
\begin{gather*}
x_{R p}=y_{p}, \quad y_{R p}=\omega x_{p}, \quad \mu_{R p}=1 / \mu_{p}  \tag{14}\\
t_{R p}=\omega t_{p}, \quad u_{R p}=u_{p}+\pi
\end{gather*}
$$

We require that the normalization factors $W_{p q}(0), \bar{W}_{p q}(0)$ in (5) satisfy

$$
\begin{equation*}
W_{q, R p}(0)=\bar{W}_{p q}(0), \quad \bar{W}_{q, R p}(0)=W_{p q}(0) \tag{15}
\end{equation*}
$$

Then the weight functions and associated parameters have the properties (for all integers $n, a, b$ )

$$
\begin{array}{cl}
W_{q, R p}(n)=\bar{W}_{p q}(n), & \bar{W}_{q, R p}(n)=W_{p q}(-n) \\
\rho_{q, R p}=\bar{\rho}_{p q}, \quad \bar{\rho}_{q, R p}=\rho_{p q}, & D_{q, R p}=\bar{D}_{p q}, \quad \bar{D}_{q, R p}=D_{p q} \tag{16}
\end{array}
$$

$$
\begin{array}{cc}
g_{q, R p}=\bar{g}_{p q}, \quad \bar{g}_{q, R p}=g_{p q}, \quad W_{p q}(n) W_{p q}(n)=\rho_{p q} \rho_{q p} \\
\sum_{c=0}^{N-1} \bar{W}_{p q}(a-c) \bar{W}_{q p}(c-b)=\bar{D}_{p q} \bar{D}_{p q} \quad & \text { if } a=b, \bmod N \\
=0 & \text { otherwise } \tag{17}
\end{array}
$$

The properties (16) ensure that replacing $p, q$ by $q, R p$ is equivalent to rotation the lattice anticlockwise through $90^{\circ}$. This leaves the $\kappa_{p q}$ and $\psi_{p q}$ unchanged, so

$$
\begin{equation*}
\kappa_{q, R p}=\kappa_{p q} \tag{18}
\end{equation*}
$$

In the physical regime, it follows from (11) that $x_{p}, x_{q}, y_{p}, y_{q}, \omega x_{p}$, $\omega x_{q}, \omega x_{q}, \omega y_{p}, \omega y_{q}, \omega^{2} x_{p}, \ldots, \omega^{N-1} y_{q}$ form a set of $4 N$ points ordered anticlockwise around the unit circle, the last element being following by the first. The mapping $p, q \rightarrow q, R p$ simply replaces each element of this cyclically ordered set by the next. Hence $\kappa_{p q}$ is unchanged if $x_{p}, x_{q}, y_{p}, y_{q}$ are replaced by any other four consecutive elements of the set.

Further, the relations (17) imply the "inversion relation" ${ }^{(8)}$

$$
\begin{equation*}
\kappa_{p q} \kappa_{p q}=\rho_{p q} \rho_{q p} \bar{D}_{p q} \bar{D}_{p q} \tag{19}
\end{equation*}
$$

where $\kappa_{p q}$ is obtained by analytically continuing $\kappa_{p q}$ through the inversion point $p=q$.

### 2.3. The Modified Partition Function per Site $\tilde{\mathbf{k}}_{p q}$

An associated quantity that we shall use is

$$
\begin{equation*}
\tilde{\kappa}_{p q}=\kappa_{p q} /\left(\rho_{p q} \bar{D}_{p q}\right) \tag{20}
\end{equation*}
$$

[This is the $\exp \left(-\Lambda_{p q}\right)$ of ref. 1 and the $V\left(t_{q}, \lambda_{q}\right)^{1 / L}$ of ref. 4.] This is independent of the normalization factors $W_{p q}(0), \bar{W}_{p q}(0)$. Using this, we find that the inversion relation (19) simplifies:

$$
\begin{equation*}
\tilde{\kappa}_{p q} \tilde{\kappa}_{p q}=1 \tag{21}
\end{equation*}
$$

while the rotation symmetry (18) becomes more complicated:

$$
\begin{equation*}
\tilde{\kappa}_{q, R p}=\left(\bar{g}_{p q} / g_{p, q}\right) \tilde{\kappa}_{p q} \tag{22}
\end{equation*}
$$

## 3. EXPRESSIONS FOR $\tilde{\mathbf{k}}_{\mathbf{p q}}$

For $\left|\lambda_{p}\right|<1,\left|\lambda_{q}\right|<1$, and $-2 \pi / N<\arg \left(t_{q}\right)<2 \pi / N$, defined functions $\Delta(\theta), A_{p q}, B_{p q}$ by

$$
\begin{align*}
\Delta(\theta)= & {\left[\left(1-2 k^{\prime} \cos \theta+k^{\prime 2}\right) / k^{2}\right]^{1 / N} }  \tag{23}\\
A_{p q}= & (2 \pi)^{-1} \int_{0}^{2 \pi} \frac{1+\lambda_{p} e^{i \theta}}{1-\lambda_{p} e^{i \theta-1}} \sum_{j=1}^{1}(N-j) \ln \left[\Delta(\theta)-\omega^{j} t_{q}\right] d \theta  \tag{24}\\
B_{p q}= & \left(8 \pi^{2}\right)^{-1} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{1+\lambda_{p} e^{i \theta}}{1-\lambda_{p} e^{i \theta}} \frac{1+\lambda_{q} e^{i \phi}}{1-\lambda_{q} e^{i \phi}} \\
& \times \sum_{j=1}^{N-1}(N-2 j) \ln \left[\omega^{-j / 2} \Delta(\theta)-\omega^{j / 2} \Delta(\phi)\right] d \theta d \phi \tag{25}
\end{align*}
$$

Then $B_{q p}=-B_{p q}$ and in ref. 6 we show that

$$
\begin{equation*}
N \ln \tilde{\kappa}_{p q}=[(N-1) / 2] \ln \left(\lambda_{q} / \lambda_{p}\right)+A_{p q}-A_{q p}-B_{p q} \tag{26}
\end{equation*}
$$

provided $\left|\lambda_{p}\right|<1,\left|\lambda_{q}\right|<1,-2 \pi / N$ arg $t_{p}<0$, and $-2 \pi / N \arg t_{q}<0$.
We can write these integrals in various ways, some of which manifest the fact that $\tilde{\kappa}_{p q}$ is real in the physical regime. In particular, if we introduce the Fourier transform funtion

$$
\begin{equation*}
G_{p}(\beta)=-\frac{\cos v_{p}}{\pi} \int_{-\infty}^{\infty} \frac{\exp \left[\beta+2 \beta\left(u_{p}+i x\right) / \pi\right] d x}{\sin \left(u_{p}+i x\right)\left(1+k^{2} \sinh ^{2} x\right)^{1 / 2}} \tag{27}
\end{equation*}
$$

then in ref. 6 it is shown that

$$
\begin{equation*}
4 N \ln \tilde{\kappa}_{p q}=(N-1) \ln \left(\frac{J_{q}}{J_{p}}\right)+\mathbf{P} \int_{-\infty}^{\infty} \frac{E_{p q}(\beta) \exp \left[2 \beta\left(u_{q}-u_{p}\right) / \pi\right] d \beta}{\beta \sinh N \beta} \tag{28}
\end{equation*}
$$

where $P$ indicates the principal-value integral and

$$
\begin{align*}
E_{p q}(\beta)= & {\left[G_{p}(\beta) G_{q}(-\beta)+\operatorname{cosech}^{2}(\beta)\right] } \\
& \times[N \sinh \beta \cosh (N-1) \beta-\sinh N \beta] \\
& +N \sinh (N-1) \beta\left[G_{p}(\beta)+G_{q}(-\beta)\right] \tag{29}
\end{align*}
$$

provided both $u_{p}, u_{q}$ lie in the interval $(-\pi, 0)$, and $v_{p}, v_{q}$ in the interval $(-\pi / 2,0)$. [There is some confusion in Eqs. (52)-(65) of ref. 6 as to the choice of $v_{p}, v_{q}$ : if we choose them as we do here, then the definition of $G_{p}(\beta)$ in Eq. (55) of ref. 6 has to be negated, giving (27). The result reported in ref. 4 is correct as written.]

We can extend these results for $\tilde{\kappa}_{p q}$ to the remainder of the physical regime, either by analytic continuation (taking care to form the correct continuation when, for instance, a pole crosses a contour of integration), or more easily by using the rotation symmetry (18), (22). Boundary cases can be handled by taking an appropriate limit.

It is readily seen (by negating $\beta$ ) that the right-hand sides of (26) and (28) are antisymmetric functions of $p$ and $q$, in argument with (1). Furthermore, it has recently been verified explicitly that the analytic continuation of (26) does indeed satisfy the rotation symmetry. ${ }^{(9)}$

## 4. THE SCALING REGION

At $k=0$ the model becomes the critical Fateev-Zamolodchikov model. ${ }^{(7)}$ Here we are interested in the behavior as this critical limit is approached. One can verify that the Boltzmann weights $W_{p q}(n), \bar{W}_{p q}(n)$ are even functions of $k$, expandable in powers of $k^{2}$, so $k^{2}$ plays the role of the temperature deviation from criticality $T_{c}-T$.

At least for $N$ even, some of the neglected terms in the expansion also contain a factor $\log k$. To avoid irritating repetition, if we say that we are neglecting terms of order $k^{n}$, then we are also neglecting terms of order $k^{n} \log k$.

Let

$$
\begin{equation*}
z_{0}=\frac{1-k^{\prime}}{1+k^{\prime}}=\frac{k^{2}}{\left(1+k^{\prime}\right)^{2}}=\exp \left[-2 \operatorname{arcosh}\left(\frac{1}{k}\right)\right] \tag{30}
\end{equation*}
$$

Then by integrating the integrand in (27) around the rectangle with vertices $-S, S, S+i \pi,-S+i \pi$, allowing for branch cuts from $i \pi / 2$ $\pm \operatorname{arcosh}(1 / k)$ to $i \pi / 2 \pm \infty$ and the pole at $i\left(\pi+u_{p}\right)$, and letting $S \rightarrow \infty$, we can rewrite (7) as

$$
\begin{equation*}
G_{p}(\beta)=\left[1+H_{p}(\beta)\right] / \cosh \beta \tag{31}
\end{equation*}
$$

where

$$
\begin{align*}
& H_{p}(\beta)=-\frac{i \cos v_{p}}{\pi} e^{\beta\left(1+2 u_{p} / \pi\right.}\left[V_{p}(\beta)-V_{p}^{*}(\beta)\right]  \tag{32}\\
& V_{p}(\beta)=2 k^{-1} z_{0}^{1-i \beta / \pi} e^{i u_{p}} \int_{0}^{1} \frac{t^{-\beta / \pi} d t}{\left(1+e^{2 i u_{p}} z_{0} t\right)\left[(1-t)\left(1-z_{0}^{2} t\right)\right]^{1 / 2}} \tag{33}
\end{align*}
$$

and $V_{p}^{*}(\beta)$ is defined similarly, but with $i$ replaced by $-i$. [Thus it is the complex conjugate of $V_{p}(\beta)$ if $k, z_{0}, u_{p}$, and $\beta$ are real.] $V_{p}(\beta)$ and
$V_{q}^{*}(-\beta)$ are bounded analytic functions of $\beta$ on the real axis and in the UHP. One can verify by direct integration that

$$
\begin{equation*}
2 \cos v_{p} V_{p}(0)=2 i v_{p}+\ln J_{p} \tag{34}
\end{equation*}
$$

Similarly, $2 \cos v_{p} V_{p}^{*}(0)=-2 i v_{p}+\ln J_{p}$, and hence $G_{p}(0)=1+2 v_{p} / \pi$.
Substituting (31) into (29), we obtain

$$
\begin{equation*}
E_{p q}(\beta)=\sum_{j=1}^{3} E_{p q}^{(j)}(\beta) \tag{35}
\end{equation*}
$$

where

$$
\begin{align*}
& E_{p q}^{(1)}(\beta)=\frac{N \sinh \beta \cosh (N+1) \beta-\sinh N \beta \cosh 2 \beta}{\sinh ^{2} \beta \cosh ^{2} \beta} \\
& E_{p q}^{(2)}(\beta)=\frac{(N-1) \sinh N \beta\left[H_{p}(\beta)+H_{q}(-\beta)\right]}{\cosh ^{2} \beta}  \tag{36}\\
& E_{p q}^{(3)}(\beta)=\frac{[N \sinh \beta \cosh (N-1) \beta-\sinh N \beta] H_{p}(\beta) H_{q}(-\beta)}{\cosh ^{2} \beta}
\end{align*}
$$

As $k \rightarrow 0, z_{0}$ also tends to zero (to leading order it is $k^{2} / 4$ ), so $V_{p}^{*}(\beta)$, $V_{q}(-\beta), V_{q}^{*}(-\beta), H_{p}(\beta), H_{q}(-\beta)$ all become small. The equations are therefore in a form where we can examine the critical behavior. To do this, it is convenient to consider separately the contributions to the RHS of (28) of the terms $E^{(1)}, E^{(2)}, E^{(3)}$.

### 4.1. Contribution from $E^{(1)}$

The term $E^{(1)}$ in (36) gives a contribution to (28) of

$$
\begin{equation*}
C_{p q}^{(1)}=\mathrm{P} \int_{-\infty}^{\infty} \frac{E_{p q}^{(1)}(\beta) \exp \left[2 \beta\left(u_{q}-u_{p}\right) / \pi\right] d \beta}{\beta \sinh N \beta} \tag{37}
\end{equation*}
$$

This is independent of $k$ and is the only nonzero contribution in the limit $k \rightarrow 0$. ( $J_{p}$ and $J_{q}$ both tend to 1 .) It is therefore the free energy $4 N \ln \tilde{\kappa}_{p q}$ of the Fateev-Zamolodchikov model ${ }^{(7)}$ [ref. 1, Eqs. (6.11) and (6.15)].

We now consider the other contributions to (28).

### 4.2. Contributions from $(N-1) \ln \left(J_{q} / J_{p}\right)$ and $E^{(2)}$

The terms arising from $E^{(2)}$ are linear in the $V$ 's and each corresponding integral can be closed around either the upper or lower half-plane.

Because $E^{(2)}$ contains a factor $\sinh \beta$, the only singularities are single poles at $\beta=0$ and double poles at $\beta=i(2 n-1) \pi / 2$ ( $n$ an integer). The poles at $\beta=0$ given a combined contribution to (28) of

$$
\begin{equation*}
(N-1) \cos v_{p}\left[V_{p}(0)+V_{p}^{*}(0)-V_{q}(0)-V_{q}^{*}(0)\right] \tag{38}
\end{equation*}
$$

Using (34), this is $-(N-1) \ln \left(J_{q} / J_{p}\right)$. Thus the contribution of the poles at $\beta=0$ precisely cancels the $(N-1) \ln \left(J_{q} / J_{p}\right)$ term in (28). This ensures that there are no terms of order $k$ (or of higher odd powers of $k$ ) in the expansion of (28).

The next highest order contribution comes from the poles at $\beta= \pm i \pi / 2$ in $E^{(2)}$, and is of order $k^{2}$ (or, because the poles are double, $k^{2} \log k$ ). To this order we can set $z_{0}=0$ inside the integrand of (33), giving

$$
\begin{equation*}
V_{p}(\beta)=2 k^{-1} z_{0}^{1-i \beta / \pi} e^{i u_{p}} B(1-i \beta / \pi, 1 / 2) \tag{39}
\end{equation*}
$$

where $B(x, y)=\Gamma(x) \Gamma(y) /(x+y)$ is Euler's beta function.
We can also take $\cos v_{p}$ in (32) to be unity, giving a contribution to (28) of

$$
\begin{equation*}
S_{p q}+S_{p q}^{*}-S_{p q}-S_{p q}^{*} \tag{40}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{p q}=\frac{2(N-1)}{\pi i k} e^{i u_{p} \mathrm{P}} \int_{-\infty}^{\infty} \frac{z_{0}^{1-i \beta / \pi} e^{\beta\left(1+2 u_{q} / \pi\right)}}{\beta \cosh ^{2} \beta} B\left(1-\frac{i \beta}{\pi}, \frac{1}{2}\right) d \beta \tag{41}
\end{equation*}
$$

and $S_{p q}^{*}$ is the "complex conjugate" obtained from it by replacing $i$ by $-i$, wile leaving $k, z_{0}, u_{p}, u_{q}, \beta$ unchanged.

The function $B(1-i \beta / \pi, 1 / 2)$ is bounded and analytic in the upper half $\beta$ plane, so the integral can be closed round the UHP, and the contribution in which we are interested comes from the double pole at $\beta=i \pi / 2$. We can break the residue at this pole into two parts:
(a) The part coming from the first derivative at $\beta=i \pi / 2$ of the factor $\beta^{-1} z_{0}^{1-i \beta / \pi} e^{\beta} B(1-i \beta / \pi, 1 / 2)$. This depends on the rapidities $p$ and $q$ only via a factor $\exp \left[i\left(u_{p}+u_{q}\right)\right]$. It is therefore symmetric in $p$ and $q$, so cancels out of (40) and can be ignored. For this reason there are no $k^{2} \log k$ terms in the contribution.
(b) The part coming from the first derivative of $\exp \left(2 \beta u_{q} / \pi\right)$. To leading order (setting $z_{0}=k^{2} / 4$ ), this contributes of $S_{p q}$ a term

$$
\begin{equation*}
-2(N-1) k^{2} \pi^{-2} u_{q} e^{i\left(u_{p}+u_{q}\right)} B(3 / 2,1 / 2) \tag{42}
\end{equation*}
$$

Noting that $B(3 / 2,1 / 2)=\pi / 2$, it follows that the contribution to (28) of the terms of order $k^{2}$ coming from $E^{(2)}$ is

$$
\begin{equation*}
C_{p q}^{(2)}=-2(N-1) k^{2} \pi^{-1}\left(u_{q}-u_{p}\right) \cos \left(u_{p}+u_{q}\right) \tag{43}
\end{equation*}
$$

There are other terms coming from the expansion of the integrand in (33) in powers of $z_{0}$, and from the poles at $\beta=3 i \pi / 2,5 i \pi / 2$, etc. These are of order $k^{4}, k^{6}, \ldots$.

### 4.3. Contributions from $E^{(3)}$

Substituting the forms (32) of $H_{p}(\beta), H_{q}(-\beta)$ into (36), we can break $E_{p q}^{(3)}(\beta)$ into two parts, one containing $V_{p}(\beta) V_{q}(-\beta)$ and $V_{p}^{*}(\beta) V_{q}^{*}(-\beta)$, the other containing $V_{p}(\beta) V_{q}^{*}(-\beta)$ and $V_{p}^{*}(\beta) V_{q}(-\beta)$.

The first involves $k$ and $z_{0}$ only via an external factor $z_{0}^{2} / k^{2}$, and the $z_{0}$ inside the integrand in (33). The corresponding contribution to (28) can therefore be expanded in powers of $k^{2}$. At first sight there is a leading term of order $k^{2}$, but it is an integral over $\beta$ from $-\infty$ to $\infty$ of an odd function of $\beta$, so it vanishes. The surviving terms are at most of order $k^{4}$.

Now consider the term containing $V_{p}(\beta) V_{q}^{*}(-\beta)$. Ignoring terms of relative order $k^{2}$, we can replace $H_{p}(\beta) H_{q}(-\beta)$ in Eq. (36) for $E^{(3)}$ by $\exp \left[2 \beta\left(u_{p}-u_{q}\right) / \pi\right] V_{p}(\beta) V_{q}^{*}(-\beta) / \pi^{2}$, i.e. [using (39)] by

$$
\begin{equation*}
(2 / \pi k)^{2} z_{0}^{2-2 i \beta / \pi} e^{2 \beta\left(u_{p}-u_{q}\right) / \pi} e^{i\left(u_{p}-u_{q}\right)} B(1-i \beta / \pi, 1 / 2)^{2} \tag{44}
\end{equation*}
$$

The resulting contribution to the integral in (28) can be closed around the UHP, the integrand being analytic except for poles arising from the factors $\sinh N \beta, \cosh ^{2} \beta$ in the denominator.

The factor $z_{0}^{2-2 i \beta / \pi}$ ensures that (for $k$ small) the dominant contribution to the integral comes from the poles closest to the origin, i.e., $\beta=i \pi j / N$ for $j=1,2, \ldots$, where $\sinh N \beta$ vanishes. (There is no pole at the origin.) Noting that $\sinh N \beta$ is then zero, we can replace the definition (36) of $E^{(3)}$ by $N \tanh \beta \cosh N \beta H_{p}(\beta) H_{q}(-\beta)$. The pole at $\beta=i \pi j / N$ therefore contributes to (28) a term

$$
\begin{equation*}
\frac{8 N i}{\pi^{2} j k^{2}} \tan \left(\frac{\pi j}{N}\right) z_{0}^{2+2 j / N} e^{i\left(u_{p}-u_{q}\right)} B\left(1+\frac{j}{N}, \frac{1}{2}\right)^{2} \tag{45}
\end{equation*}
$$

The term" containing $V_{p}^{*}(\beta) V_{q}(-\beta)$ is the "complex conjugate" of this, so altogether (again taking $z_{0}=k^{2} / 4$ ) we obtain a contribution to (28) of

$$
\begin{equation*}
C_{p q}^{(3)}=\frac{N k^{2}}{\pi^{2}} \sin \left(u_{q}-u_{p}\right) \sum_{j=1}^{\infty} j^{-1}\left(\frac{k}{2}\right)^{4 j / N} \tan \left(\frac{\pi j}{N}\right) B\left(1+\frac{j}{N}, \frac{1}{2}\right)^{2} \tag{46}
\end{equation*}
$$

If $N$ is even, a problem arises when $j$ is an odd multiple of $N / 2$ (due to the integrand having a double pole). However, we are neglecting terms of order $k^{4}$, so should restrict the sum in (46) to $1 \leqslant j<N / 2$, which removes the difficulty.

Ignoring terms of order $k^{4}$ or smaller, we thus have

$$
\begin{equation*}
4 N \ln \tilde{\kappa}_{p q}=C_{p q}^{(1)}+C_{p q}^{(2)}+C_{p q}^{(3)} \tag{47}
\end{equation*}
$$

As discussed in the introduction, $C_{p q}^{(1)}$ is the contribution of the critical free energy (i.e., the Fateev-Zamolodchikov model) and is given by (37); $C_{p q}^{(2)}$ is the first analytic correction, being proportional to $k^{2}$ and given by (43); $C_{p q}^{(3)}$ is the scaling contribution, given by (46). Note that $C_{p q}^{(3)}$, consider as a function of $k$ and the rapidity variables $u_{p}$ and $u_{q}$, has the form

$$
\begin{equation*}
C_{p q}^{(3)}=k^{2} \sin \left(u_{q}-u_{p}\right) F\left(k^{4 / N}\right) \tag{48}
\end{equation*}
$$

where $F(x)$ is a Taylor-expandable function of $x$. [If we truncate the series in (47) to $1 \leqslant j<N / 2$, as remarked above, then it is a polynomial.]

## APPENDIX A

Here we consider the critical $k \rightarrow 0$ limit, when the model reduces to that of Fateev and Zamolodchikov, and show that our expressions (28), (37) then agree with previous results in refs. 7 and 1.

From (2)-(4) and (13), in this limit $v_{p}=v_{q}=0$ and we can choose $\mu_{p}=\mu_{q}=1$. Then (5) gives

$$
\begin{align*}
& W_{p q}(n)=W_{p q}(0) \prod_{j=1}^{n} \frac{\sin [\pi j / N-(\pi+\alpha) / 2 N]}{\sin [\pi j / N-(\pi-\alpha) / 2 N]}  \tag{A1}\\
& \bar{W}_{p q}(n)=\bar{W}_{p q}(0) \prod_{j=1}^{n} \frac{\sin [\pi(j-1) / N+\alpha / 2 N]}{\sin [\pi j / N-\alpha / 2 N]}
\end{align*}
$$

where $\alpha=u_{q}-u_{p}$. These formulas agree (to within a normalization) with those of Fateev and Zamolodchikov. ${ }^{(7)}$ Also (6), (7) give

$$
\begin{equation*}
\bar{D}_{p q} / \bar{\rho}_{p q}=N^{1 / 2}(2 \sin \alpha / 2)^{(1-N) / N} \prod_{j=1}^{N-1}[2 \sin (\alpha+\pi j) / N]^{j / N} \tag{A2}
\end{equation*}
$$

For $0<a, b<\pi$, one has the formula

$$
\ln \left[\frac{\sin a}{\sin b}\right]=\mathrm{P} \int_{-\infty}^{\infty} \frac{e^{-t}\left(e^{2 b / \pi}-e^{2 a t / \pi}\right) d t}{2 t \sinh t}
$$

from which one can deduce, for $0<\alpha<\pi$, that

$$
\begin{align*}
& 4 N \ln \left[\frac{\rho_{p q}}{W_{p q}(0)}\right]=\mathrm{P} \int_{-\infty}^{\infty} \frac{e^{2 \alpha \beta / \pi}}{\beta \sinh N \beta} g_{1}(\beta) d \beta  \tag{A3}\\
& 4 N \ln \left[\frac{\bar{D}_{p q}}{\bar{W}_{p q}(0)}\right]=2 N \ln N+\mathrm{P} \int_{-\infty}^{\infty} \frac{e^{2 \alpha \beta / \pi}}{\beta \sinh N \beta} g_{2}(\beta) d \beta
\end{align*}
$$

where

$$
\begin{align*}
& g_{1}(\beta)=\frac{2 \cosh 2 \beta \sinh N \beta}{\sinh ^{2} 2 \beta}-\frac{N \cosh 2 N \beta}{\cosh N \beta \sinh 2 \beta} \\
& g_{2}(\beta)=\frac{N e^{2(N-1) \beta}}{\sinh 2 \beta \cosh N \beta}+\frac{2 \sinh N \beta \cosh 2 \beta}{\sinh ^{2} 2 \beta}-\frac{N e^{(N-1) \beta}}{\sinh \beta} \tag{A4}
\end{align*}
$$

From (20), (28), and (37), for $k=0$ our result is

$$
4 N \ln \left[\frac{\kappa_{p q}}{p_{p q} \bar{D}_{p q}}\right]=\mathrm{P} \int_{-\infty}^{\infty} \frac{e^{2 \alpha \beta / \pi}}{\beta \sinh N \beta} E_{p q}^{(1)}(\beta) d \beta
$$

Using (A3), we can write this written as

$$
\begin{equation*}
\ln \left[\frac{\kappa_{p q}}{W_{p q}(0) \bar{W}_{p q}(0)}\right]=\frac{1}{2} \ln N+\int_{-\infty}^{\infty} \frac{e^{2 \alpha \beta / \pi}}{4 N \beta \sinh N \beta} h(\beta) d \beta \tag{A5}
\end{equation*}
$$

where

$$
\begin{align*}
h(\beta) & =E_{p q}^{(\mathrm{I})}(\beta)+g_{1}(\beta)+g_{2}(\beta) \\
& =-N e^{-\beta} \frac{\sinh (N-1) \beta \sinh N \beta}{\cosh ^{2} \beta \cosh N \beta} \tag{A6}
\end{align*}
$$

The variables $u_{p}, u_{q}$ in ref. 1 are the same as those here. Also, $\Lambda_{p q}$, $W_{p q}(1,1), \quad \bar{W}_{p q}(1,1), f\left(u_{q}-u_{p}\right)$ therein are our expressions $-\ln \tilde{\kappa}_{p q}$, $W_{p q}(0) / \rho_{p q}, \bar{W}_{p q}(0) / \bar{\rho}_{p q}, \bar{D}_{p q} / \bar{\rho}_{p q}$. Thus in our present notation the result (6.11), (6.15) of ref. 1 (for $k=0$ ) is

$$
\begin{equation*}
\ln \left[\frac{\kappa_{p q}}{W_{p q}(0) \bar{W}_{p q}(0)}\right]=\int_{0}^{\infty} \frac{\sinh \alpha x \sinh (\pi-\alpha) x \sinh (N-1) \pi x}{x \cosh ^{2} \pi x \cosh N \pi x} d x \tag{A7}
\end{equation*}
$$

Setting $x=\beta / \pi$, we can write this as

$$
\begin{equation*}
\ln \left[\frac{\kappa_{p q}}{W_{p q}(0) \bar{W}_{p q}(0)}\right]=\int_{-\infty}^{\infty} \frac{[\cosh \beta-\cosh (2 \alpha / \pi-1) \beta] \sinh (N-1) \beta}{4 \beta \cosh ^{2} \beta \cosh N \beta} d \beta \tag{A8}
\end{equation*}
$$

Noting the evenness of the integrand and that

$$
\int_{-\infty}^{\infty} \frac{\sinh (N-1) \beta}{\beta \cosh \beta \cosh N \beta} d \beta=2 \ln N
$$

we see that this is the same as our result (A5).
It is also the same as Eq. (12) of ref. 7, provided we normalize so that $W_{p q}(0)=\bar{W}_{p q}(0)=1$. [In fact it appears from Eq. (2) of ref. 7 that Fateev and Zamolodchikov normalized $\xi_{p q}=\sum_{n=0}^{N-1} W_{p q}(n) / N$ and $\bar{\xi}_{p q}=\sum_{n=0}^{N-1} \bar{W}_{p q}(n) / N$ to be unity, which means that their "specific" free energy should be $-\ln \left(\kappa_{p q} / \xi_{p q} \bar{\xi}_{p q}\right)$. Since $W_{p q}(0) \bar{W}_{p q}(0) / \xi_{p q} \bar{\xi}_{p q}=N$, this implies that the RHS of Eq. (12) of ref. 7 should contain an additional term $-\ln N$.]

## APPENDIX B

Here we use the alternative method of ref. 1 to evaluate the free energy to the same order as in (47). In particular we rederive the contributions $C_{p q}^{(2)}$ and $C_{p q}^{(3)}$. (This method does not immediately give $C_{p q}^{(1)}$, which plays the role of an undetermined constant of integration, independent of $k$ and depending on $u_{p}$ and $u_{q}$ only via their difference $u_{q}-u_{p}$.) The results agree (as of course they should) with (43) and (46), and are consistent with (37).

We denote the equations of ref. 1 by the prefix I. The summand in (I.5.37) is unchanged by $j \rightarrow N-j$ and when $k$ is small the integral is dominated by the region where $l$ is of order $k$, hence

$$
\begin{align*}
\lambda(k)= & -\frac{8}{\pi^{3} N^{2}} \sum_{j=1}^{N-1}(N-2 j) \sin ^{2}\left(\frac{\pi j}{N}\right) \\
& \times \int_{0}^{\infty} \frac{2}{\left(k^{2}+l^{2}\right)^{2}} K_{(2 j-N) / 2 N}^{2}(l) l d l \tag{B1}
\end{align*}
$$

When $k$ is small, from (I.5.7),

$$
K_{n}(k)=\frac{1}{2} k^{2 n} B(n+1 / 2, n+1 / 2)
$$

while from (3.194.6) of ref. 10 ,

$$
\int_{0}^{\infty} \frac{l^{(4 j-N) / N} d l}{\left(k^{2}+l^{2}\right)^{2}}=k^{4(j-N / N} \frac{(N-2 j) \pi}{2 N \sin (2 \pi j / N)}
$$

so (B1) becomes

$$
\begin{equation*}
\lambda(k)=-\sum_{j=1}^{N-1} \gamma_{j} k^{4(j-N) / N} \tag{B2}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{j}=\left[(N-2 j)^{2} / \pi^{2} N^{3}\right] \tan (\pi j / N) B(j / N, j / N)^{2} \tag{B3}
\end{equation*}
$$

From (I.5.6), neglecting terms of relative order $k^{2}$, it follows that

$$
\begin{equation*}
\hat{G}_{n}(k)=B\left(n+\frac{1}{2}, n+\frac{1}{2}\right) \sum_{j=1}^{N-1} \frac{N^{2} \gamma_{j} k^{2 n-2+4 j / N}}{8(N-2 j)(2 j-N+2 n N)} \tag{B4}
\end{equation*}
$$

From (I.5.5), (I.4.13), (I.4.12), and (I.6.9), it follows that, to this order in each Fourier coefficient, the functions $x_{p}, y_{p}$ of ref. 1 are

$$
\begin{align*}
& x_{p}=-H_{0}-2 \sum_{n=1}^{\infty} H_{n}(k) \cos 2 n u_{p}  \tag{B5}\\
& y_{p}=\frac{N-1}{N \pi} k^{2} u_{p}+2 \sum_{n=1}^{\infty} H_{n}(k) \sin 2 n u_{p}
\end{align*}
$$

where

$$
\begin{equation*}
H_{n}(k)=(-1)^{n} \sum_{j=1}^{N-1} \frac{N^{2} \gamma_{j} k^{2 n+4 j / N}}{2^{n+2}(N-2 j)^{2}} \prod_{m=0}^{n-1} \frac{j+m N}{2 j+N+2 m N} \tag{B6}
\end{equation*}
$$

Substituting these results into (I.3.45) and (I.3.46) and ignoring (for given $u_{p}$ and $u_{q}$ ) contributions to $A_{p q}$ of order $k^{4}$ or smaller, we need only retain the coefficient $H_{1}(k)$ and the term in $y_{p}$ linear in $u_{p}$, giving

$$
\begin{equation*}
-4 N \Lambda_{p q}=4 N \ln \tilde{\kappa}_{p q}=D_{p q}^{(1)}+D_{p q}^{(2)}+D_{p q}^{(3)} \tag{B7}
\end{equation*}
$$

where $D_{p q}^{(1)}$ is a function of $u_{q}-u_{p}$ only, independent of $k$, but is otherwise at this stage undetermined, and

$$
\begin{align*}
D_{p q}^{(2)} & =-(2 / \pi)(N-1) k^{2}\left(u_{q}-u_{p}\right) \cos \left(u_{p}+u_{q}\right)  \tag{B8}\\
D_{p q}^{(3)} & =-16 N \sin \left(u_{q}-u_{p}\right) \int_{0}^{k} l^{-1} H_{1}(l) d l \\
& =N^{4} \sin \left(u_{q}-u_{p}\right) \sum_{j=1}^{N-1} j \gamma_{j} k^{2+4 / / N} /\left(N^{2}-4 j^{2}\right)^{2} \tag{B9}
\end{align*}
$$

Noting (using formula 8.335 of ref. 10) that

$$
\begin{equation*}
B(x, x)=(2 x+1) B(1+x, 1 / 2) /\left(4^{x} x\right) \tag{B10}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
D_{p q}^{(3)}=\left(N k^{2} / \pi^{2}\right) \sin \left(u_{q}-u_{p}\right) \sum_{j=1}^{N-1} j^{-1}(k / 2)^{4 / N} \tan (\pi j / N) B(1+j / N, 1 / 2)^{2} \tag{B11}
\end{equation*}
$$

If we truncate the sum in (B9) to only the $j=1$ term, then we regain the result (I.6.11).

We want to assert that the main result (47) of this paper is consistent with the result (B7) of this appendix, more strongly that $C_{p q}^{(i)}=D_{p q}^{(i)}$ for $i=1,2,3$. Certainly $C_{p q}^{(1)}$ is a function of $u_{q}-u_{p}$ only, independent of $k$, and so has the form allowed for $D_{p q}^{(1)}$. Also, from (43) with (B8), $C_{p q}^{(2)}=D_{p q}^{(2)}$. As written, the sums in (46) and (B11) have different upper limits, but, as remarked after (46), to order less than $k^{4}$ both should be restricted to the range $1 \leqslant j<N / 2$. (This restriction also removes the problem that many of the summands of this appendix are undetermined or infinite for $j=N / 2$.) Then we obtain $C_{p q}^{(3)}=D_{p q}^{(3)}$. Thus (7) is consistent with (47).

## REFERENCES

1. R. J. Baxter, J. Stat. Phys. 52:639-667 (1988).
2. R. J. Baxter, J. H. H. Perk, and H. Au Yang, Phys. Lett. A 128:138-142 (1988).
3. H. Au-Yang and J. H. H. Perk, Onsager's star-triangle equation: Master key to integrability, in Advanced Studies in Pure Mathematics, Vol. 19, K. Aomoto and T. Oda, eds. (Academic/Kinokumiya, Tokyo, 1989), pp. 57-94.
4. R. J. Baxter, Phys. Lett. A 146:110-114 (1990).
5. R. J. Baxter, V. V. Bazhanov, and J. H. H. Perk, Int. J. Mod. Phys. B 4:803-870 (1990).
6. R. J. Baxter, Calculation of the eigenvalues of the transfer matrix of the chiral Potts model, in Proceedings of the Fourth Asia-Pacific Physics Conference (Seoul, Korea, 1990) (World Scientific, Singapore, 1971), Vol. 1, pp.42-58.
7. V. A. Fateev and A. B. Zamolodchikov, Phys. Lett. A 92:37-39 (1982).
8. R. J. Baxter, J. Stat. Phys. 28:1-41 (1982).
9. M. J. O'Rourke and R. J. Baxter, Interfacial tension of the chiral Potts model, J. Stat. Phys. 82:1-29 (1996).
10. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic Press, New York, 1965).

[^0]:    ${ }^{1}$ Theoretical Physics, I.A.S., and School of Mathematical Sciences, Australian National University, Canberra, A.C.T. 0200, Australia.

